Limitations of silencing at native yeast telomeres.

نویسندگان

  • F E Pryde
  • E J Louis
چکیده

Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of URA3 inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p-binding site significantly reduces silencing. The subtelomeric Y' elements are resistant to silencing along their whole length, yet silencing can be re-established at the proximal X element. Deletion of PPR1, the transactivator of URA3, and SIR3 overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends. sir1Delta causes partial derepression at X-ACS, in contrast to the lack of effect seen at terminal truncations. orc2-1 and orc5-1 have no effect on natural silencing yet cause derepression at truncated ends. X-ACS silencing requires the proximity of the telomere and is dependent on SIR2, SIR3, SIR4 and HDF1. The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential nuclear localization does not determine the silencing status of Saccharomyces cerevisiae telomeres.

In Saccharomyces cerevisiae, genes near telomeres are transcriptionally repressed, a phenomenon termed telomere position effect (TPE). Yeast telomeres cluster near the nuclear periphery, as do foci of proteins essential for TPE: Rap1p, Sir2-4p, and yKu70p/yKu80p. However, it is not clear if localization of telomeres to the periphery actually contributes to TPE. We examined the localization patt...

متن کامل

Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae.

Individual yeasts have a finite replicative life span in similarity to normal human fibroblasts. Telomere loss is a hallmark of replicative senescence in normal human fibroblasts and has been proposed to play a role in cellular senescence, perhaps by affecting subtelomeric genes. While telomere loss does not occur with replicative age in yeast, subtelomeric genes are subject to transcriptional ...

متن کامل

Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein.

Rap1p binds to silencer elements and telomeric repeats in yeast, where it appears to initiate silencing by recruiting Sir3p and Sir4p to the chromosome through interactions with its carboxy-terminal domain. Sir3p and Sir4p interact in vitro with histones H3 and H4 and are likely to be structural components of silent chromatin. We show that targeting of these Sir proteins to the chromosome is su...

متن کامل

The DNA end-binding protein Ku regulates silencing at the internal HML and HMR loci in Saccharomyces cerevisiae.

Heterochromatin resides near yeast telomeres and at the cryptic mating-type loci, HML and HMR, where it silences transcription of the alpha- and a-mating-type genes, respectively. Ku is a conserved DNA end-binding protein that binds telomeres and regulates silencing in yeast. The role of Ku in silencing is thought to be limited to telomeric silencing. Here, we tested whether Ku contributes to s...

متن کامل

Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions.

Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates sil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 18 9  شماره 

صفحات  -

تاریخ انتشار 1999